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Some previous work / airfoil design 
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• Airfoils are mapped to a near circle by Joukowski transformation 
 
 
 
 
 
 

• ak and bk are the coefficients to be determined, we choose k=3 in 
the present optimization,  x=[a1, b1, a2, b2, a3, b3] 
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Design requirements: 
 
1. Low noise; 
2. Reduce maximum lift (prevent extra gusts and storm loading); 
3. Less sensitive to surface roughness; 
4. Improve after-stall performance; 
5. Improve structure properties: thickness distribution, bluntness, surface 

curvature, skewness.  
6. High design Cl and Cl/Cd should still be aimed. 
    

Some previous work / requirements 
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Some previous work / low noise airfoils 
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wind tunnel tested for aeroacoustics: LN118  
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Some previous work / high Cp airfoils 
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wind tunnel tested for aerodynamics: C18,C21,C24  
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Some previous work / Blade optimization 
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Wind Energ. (2009) 

Cost      7.1% 

AEP     4% 

COE     3.3% 
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Integrated design / method summary 
• The core of the present optimization work is to develop large wind 

turbine blade with lower cost of energy (COE).  
 

• At every local blade spanwise location, the design objective of each airfoil 
is high power coefficient and small chord length. 
 

• The objective and constrains are different from each airfoil due to their 
different local flow condition.  
 

• The flow geometry over the rotor is preserved such that the flow angle is 
maintained at its optimum position using the designed airfoils. 
 

• As a result of integrated design, the obtained blade platform ensures 
optimum flow geometry over the rotor.  
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Integrated design / flow chart 
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Integrated design / BEM analyses 
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• The 2D-BEM connects the airfoil optimization and optimal blade design. 
 

• The steps of BEM iteration: 
   1). Initialization: Cp =0 and φ=0; 
   2). Read Cl  and Cd  from airfoil calculations. 
   3). Compute tangential and axial force coefficients. 
         𝑐𝑐𝑡𝑡 = 𝑐𝑐𝑙𝑙(sin𝜑𝜑 − 𝑐𝑐𝑑𝑑/𝑐𝑐𝑙𝑙 cos𝜑𝜑) 
         𝑐𝑐𝑛𝑛 = 𝑐𝑐𝑙𝑙(cos𝜑𝜑 + 𝑐𝑐𝑑𝑑/𝑐𝑐𝑙𝑙 sin𝜑𝜑) 
   4). Compute induction factor at ,flow angle φ and solidity. 
         𝑎𝑎𝑡𝑡 = 4 sin𝜑𝜑 cos𝜑𝜑/𝜎𝜎𝑐𝑐𝑡𝑡 − 1 −1 
         𝜑𝜑 = atan (1 − 𝑎𝑎𝑛𝑛)/𝑥𝑥(1 + 𝑎𝑎𝑡𝑡)  
         𝜎𝜎𝑐𝑐𝑛𝑛 = 2𝐹𝐹 sin2 𝜑𝜑 
    5). Compute Cp 

          𝐶𝐶𝑝𝑝 = 1 − 𝑎𝑎𝑛𝑛 2 + 𝑥𝑥 1 + 𝑎𝑎𝑡𝑡 2 𝑥𝑥𝜎𝜎𝑐𝑐𝑡𝑡  
    6).  If 𝐶𝐶𝑝𝑝 𝑖𝑖 + 1 − 𝐶𝐶𝑝𝑝 𝑖𝑖 > 10−3, goto 3). 
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Airfoil design / techniques 

11 12/9/2013 

• Design condition: 
  - The design Reynolds number is estimated to be about Re=15x106.  
  - Design AoA is between 3 and 10degs.  
  - Free transition simulation is based on the en model with n=9;  
    Force transition simulation is carried out by fixing the upper and lower transition 

points at 5% and 10% chords measured from leading edge, respectively. 
 
•  Design variables: 
   - The shape perturbation function   
 
 
      where,  
             
       g=[0.1 0.2 0.3 0.4 0.5 0.75 1 1.5 2 2.5 3 4 7 8].  
 
    - total number of design points: dofs=2*N+2  
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Airfoil design / techniques 
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Fig. Example of shape perturbation 
functions. 

Fig. Example of profile fitting: begin with 
LN118 and start with randomly seed of 
design variables. 
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Airfoil design / techniques 
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• Design  objectives: 
  - The design objective is the blending of power coefficient and the rotor 

solidity, such as 
𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑘𝑘𝐶𝐶𝑝𝑝 + (1 − 𝑘𝑘)/𝜎𝜎 

  - The power coefficient is weighted between clean and rough conditions 
with the AoA range from 3 to 10 degs.  

      
         

 
• Design constrains: 
    - thickness to chord ratio;  
    - limited difference in maximum lift for clean and rough cases;    
    - maximum thickness location x/c between 0.25-0.35; 
    - minimum thickness near the trailing edge; 
    - surface curvature. 
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Airfoil design / techniques 
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• Summarise of the key design steps: 
 

 Random seed of design variables 

 Set lower and upper boundaries for the design variables 

 Set shape, aerodynamic, structure constraints  

 Read a reference profile 

 Using the shape pertubation function to create a new profile 

 Call Xfoil, compute Cl, Cd at AoA=[3:10]degrees.  

 Call BEM, compute the objective function: Cp 

 Call optimization function and evaluate Cp 
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Airfoil design / Airfoil shape max(t/c)=18-30% 
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Fig. The DTU-R130-xx airfoils 
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Airfoil design / key parameters 
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Table. Airfoil characteristics and blade parameters. 
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Airfoil design – lift and drag 18,21,24,27% 
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18% 21% 

27% 24% 
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Airfoil design – power coefficient 18,21,24,27% 
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18% 21% 

27% 24% 
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Blade platform design – chord and twist 
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When the local high Cp is found, the corresponding optimal chord and 
flow angle are obtained. 
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Simulations / full blade BEM 
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BEM approach: 
 
A standard momentum theory is applied on each blade element such 
that the thrust and torque are calculated as  
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The axial and tangential induction factors a and a’ are iteratively 
calculated including the tip loss effect  
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Simulations / full blade BEM 
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BEM approach continue: 

The factor F1 is introduced to model the tip effect about airfoil data. 
The 2D lift and drag coefficients are corrected near the tip with 3D 
effect such that 
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Simulations / full blade CFD 
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CFD approach: 
 
• The numerical validation code used here is the incompressible flow 

solver EllipSys3D.  
 

• The solver was developed at Technical University of Denmark (DTU) 
since 1990s.  
 

• It is a general-purpose Navier-Stokes code based on a second-order 
multi-block finite volume method. 
 

• For wind turbine application, the Navier-Stokes equations are solved 
in a 3D polar rotating frame. The velocities relative to a fixed frame 

are  
𝑣𝑣�𝑟𝑟
𝑣𝑣�𝜃𝜃
𝑣𝑣�𝑧𝑧

=
0
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0
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𝑣𝑣𝑟𝑟
𝑣𝑣𝜃𝜃
𝑣𝑣𝑧𝑧

 , the relative velocity components (𝑣𝑣𝑟𝑟 , 𝑣𝑣𝜃𝜃 ,𝑣𝑣𝑧𝑧) 

are solved in the polar system. 
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Simulations / full blade CFD 
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CFD approach continue: 
 

• The blade surface mesh is 
generated orthogonally with 
53248 mesh points.  

• The volume mesh is created 
between the blade wall surface 
and the outer boundaries.  

• The wind goes through the z-axis 
and the blade rotates in the 
clockwise direction seen from the 
upwind direction.  

• The total number of grid points is 
about 10.5 million which is 
divided into 40 blocks with 643 
grid point per block.  

• To resolve flow around the wall 
boundary, the smallest cell size 
near the wall surface is in the 
order of 10-6.  
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Simulations / results 
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• Computations are performed at the 
design wind speed of U = 10 m/s 
and TSR = 8.  

• For the BEM computation, the blade 
is divided into 40 elements.  

• The elastic model is deactivated in 
the unsteady BEM code. Also the 
tower, wind shear effects are not 
included. 

• From r = 40 m to r = 110 m, the 
normal induction factor is around 
0.35. 

• From r=40 m towards tip, the 
angles of attack are well below 10 
degrees. This indicates attached 
flow over most part of the blade 
which ensures the high power 
performance.   
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Simulations / results 
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Since the Reynolds number is so high in the present case, it is necessary to 
check the mesh resolution near the wall. A plot of y+ value on the blade surface 
is one of the straight forward ways to check the wall resolution. the largest y+ 
value is less than 1.2 which is located at the leading edge of the blade out part. 
This ensures the viscos sub-layer being well resolved.  
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Simulations / results 

26 12/9/2013 

Good agreements are observed between results from BEM and CFD methods. CFD 
predicts slightly higher forces than BEM which is observed from 40m<r<130m. Such a 
difference is often caused by the rotational effect that has been modelled by CFD but 
not enough counted by BEM.  
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Simulations / results 
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• Cp plot shows smooth 
pressure distribution 
along the blade. 

• The R130-18, R130-21, 
R130-24, R130-27 and 
R130-30 airfoils are 
seen from the five 
spanwise locations. 

• The increase of chord 
length and twist angle 
along the blade is 
illustrated in the figure. 
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Simulations / results 
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       (a) r=110m;                                                    (b) r=80m;  
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Simulations / results 
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       (c) r=65m;                                                    (d) r=50m;  

(e) r=40m.  
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Conclusions 
• The integrated airfoil and blade design method has been introduced. The 

BEM connects the airfoil optimization and blade design. 
 

• Airfoil design is based on the shape perturbation method which allows the 
optimization to start with any existing airfoil. 
 

•  The airfoils are insensitive to surface roughness and mantain high power   
coefficients at a wide range of AOA. 
 

• The optimal blade platform is automatically generated when optimal 
airfoils are obtained. 
 

• Validations carried out by full BEM and CFD have both shown good 
aerodynamic characteristics. 
 

• Results indicate that the integration of the simplified BEM and Xfoil can 
be regarded as a reliable tool for airfoil and rotor platform design.  
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Future work 
• All the results are based on the assumption that axial induction factor is 

1/3. It is possible to carry out future work that calculates the wake 
induction through the airfoil optimization.  
 

• An interesting task in the future is to combine the Q3UIC code with the 
blade design. The code uses the concept of UNSTEADY VISCOUS- 
INVISCID STRONG INTERACTION via transpiration velocity. 

    - Inviscid flow  Unsteady potential flow, Panel Method.  
    - Viscous flow  Quasi 3-D integral BL equations + Closures. 
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Thank you for your attention! 
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