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Agenda

e Why a smart rotor?
e Aerodynamic model for Adaptive Trailing Edge Flaps
e Flap and structural response
e Flap and control
— SISO System ID and LQ example
— Potential of integrated model based controller

—HAWCStab2 Framework for integrated model

based control design

e Future work and topics of interest
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Why a smart rotor?

 Wind turbine (on shore and off shore) operate in non-uniform flow field
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e Non-uniform flow filed produces varying loads on blades and structure ->
loads amplification and fatigue damage
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Why a smart rotor? (2)

Rotor with Adaptive Trailing Edge Flaps

Compensate for variations in wind field

4

Modify airfoil geometry

3

Control Aerodynamic Forces

4
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Active Load Alleviation

DTU Wind Energy, Technical University of Denmark
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Smart Rotor

— Combination of sensors,
control unit, actuators

— Actively reduces the loads it
has to withstand

— Actuators:
e Blade Pitch

e Distributed
aerodynamic control
(Trailing Edge Flaps)
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Agenda

e Aerodynamic model for Adaptive Trailing Edge Flaps

e Flap and structural response

5 DTU Wind Energy, Technical University of Denmark 3 December 2013



Aerodynamic model for Flaps

e For aeroelastic simulations:

— BEM framework: 2D model
— Simple and fast: engineering model.

 Model should account for:
— Steady Effects:
Passed as input

— Unsteady dynamics:
e Attached flow & non circ.

Thin-airfoil in potential flow (Gaunaa)

e Flow separation:

Beddoes-Leishmann type of dynamic stall
model (Hansen model for TE stall of a rigid
airfoil) Modified for flap contribution
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Attached flow dynamics

e Lift response: superposition of Step Responses. o
- Indicial Response Function (Wagner): 07
— Not dependent on the cause :”
— Formulated in exp. terms for integration (Jones) s
— Depends on Airfoil Geometry (Thickness) Ny Ié‘.;.
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Unsteady Aerodynamics: Flow Separation

Potential flow model coupled with Beddoes-Leishmann dynamic stall model:
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Flap and structural response

e Aerodynamic flap model implemented in HAWC2, aeroelastic model of a

rotor with flaps.

e Structural Dynamics in response to flap deflection:
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Agenda

e Flap and control
— SISO System ID and LQ example
— Potential of integrated model based controller

—HAWCStab2 Framework for integrated model

based control design
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Flap and Control

e Control Algorithm (for flaps)
e - "~ cture Aero. «@amics
— “Brain” of the system
— Actuates the flap

— In response to measurements Control

— Pursues a control objective: load
alleviation, power increase, etc.

e Model based control algorithm:

— “knows” the system -> more effective O S SO S U S S SO N
— Simplified (linear) model for control 7 A
design: 27 g

e System ldentification ;:ﬁm

e First principle modeling " o
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System ldentification and LQ control

e Numerical approach: “black-box” relation between input and output

e Isolated blade (simplification)
» Single Input (Bl.Rt.Mx) - Single Output (Flap)

« Additional signals to account for periodic load
variation
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SISO-LQ: DEL alleviation
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e Why a smart rotor?
e Aerodynamic model for Adaptive Trailing Edge Flaps
e Flap and structural response
e Flap and control
— SISO System ID and LQ example
— Potential of integrated model based controller

— HAWCStab2 Framework for integrated model

based control design

e Future work and topics of interest

14 DTU Wind Energy, Technical University of Denmark

=
=
[—

i

3 December 2013



Magnitude |dB]

i

Integrated Model Based Control

Framework for linear control design models:
* Tool to derive linear model describing the whole system behavior
 From First principle modeling

- Potential: Integrated controller design:
— Measurements from all available sensors
— Controls all available actuators: Individual Pitch, Flaps

— Multiple control objectives: Power limitation, load alleviation on blade,
load alleviation on other components (tower), (power enhancement?)

» Potential for load alleviation verified in a preliminary study on NREL SMW:
— Simplified modeling approach
— Confirmed the potential for load alleviation
— Allows for work load distribution between actuators
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—HAWCStab2 Framework for integrated model

based control design

e Future work and topics of interest
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Next steps: HAWCStab2 and Flap ctrl

e Linear control design models framework from HAWCStab2

 Implementation of simplified linear flap aerodynamic model:
— Quasi-Steady aerodynamic effects from flap deflection
— Flap doesn’t affect flow separation (stall).
— Frozen wake assumption with no flap effects.

» Validation and limits of simplified flap model:
— Comparison with time marching response (step, bode)
— ...eventually expand the model

e Model reduction method:
— HAWCStab2 linear model - Control design model

e Design and testing of an integrated pitch-flap controller
— Single flap section per blade, Multiple flap sections
— Integration with inflow measurements
— Load alleviation on different components
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Potential for integrated model based flap and pitch controller.
Formulate a method to retrieve the necessary linear control design model from first principles.
We will do that starting from the linear model formulation in HAWCSTab2
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Next Steps & Topics of interest

e Integrated model based control design:

— HAWCStab2 Framework for linear control design models

e Incorporate inflow measurement in advanced controllers:
— Control formulation (measured disturbance?)
— Effect of bound circulation? (model for simulations)
— Pressure difference sensors on the airfoil?

e Control below rated for optimal
power tracking?
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